CẨM NANG HỌC TẬP | BÍ QUYẾT HỌC TẬP  

Phương pháp học toán hiệu quả - Gia sư toán lớp 1 2 3 5 5 6 7 8 910 11 12 tại Vinh

Phương pháp học toán học hiệu quả Đôi khi, môn học khó khăn nhất đối với một số người là toán học. Có rất nhiều các công thức, phương trình, và các định lý của toán học phải biết. Nếu bạn muốn học tốt toán học, rất nhiều áp lực có thể được đặt trên vai của bạn khi nhớ hết tất cả các công thức, định lý liên quan. Và điều quan trọng hơn bạn phải làm là liên kết chúng lại để xử lý một bài toán hóc búa.

Gia sư toán lớp 11 tại thành phố Vinh - Hàm số ượng giác

CÁC HÀM SỐ LƯỢNG GIÁC Nội dung bài học: 1. Bài giảng - Bài giảng bao gồm các nội dung: + Giới thiệu các dạng của hàm số lượng giác. + Tập xác định của hàm số lượng giác + Biểu diễn các hàm số lượng giác trên đường tròn. + Xét tính chẳn lẻ của hàm số lượng giác + Tìm giá trị lớn nhất và nhỏ nhất của hàm số lượng giác - Một vài ví dụ và bài tập đề nghị.

Gia sư toán lớp 11 tại thành phố Vinh - Phương trình lượng giác

BIẾN ĐỔI LƯỢNG GIÁC Nội dung bài giảng I. Tóm tắt lý thuyết biến đổi lượng giác - Các phương pháp biến đổi các biểu thức lượng giác - Các dạng chứng minh biểu thức lượng giác. II. Bài tập áp dụng

Gia sư toán 11 tại Vinh - Tổ hợp và xác suất

HAI QUY TẮC ĐẾM CƠ BẢN Nội dung bài học: 1. Bài giảng - Bài giảng bao gồm các nội dung: + Quy tắc cộng + Quy tắc nhân - Một vài ví dụ và bài tập đề nghị.

Gia su taon 11 tai Vinh - Dãy số, cấp số

CẤP SỐ CỘNG (TIẾT 1) Nội dung bài giảng I. Tóm tắt lý thuyết cấp số cộng - Các khái niệm. - Các tính chất. - Các dạng toán liên quan đến cấp số cộng. + Dạng 1: chứng minh tính chất của một cấp số cộng. + Dạng 2: Chứng minh 3 số a, b, c lập thành một cấp số cộng.

Gia sư toán 10 tại thành phố Vinh - Đạo hàm

VĐ1. TÍNH ĐẠO HÀM BẰNG ĐỊNH NGHĨA Nội dung bài giảng I. Tóm tắt lý định nghĩa đạo hàm - Định nghĩa đạo hàm tại một điểm. - Định lý đạo hàm. - Ý nghĩa hình học của đạo hàm. - Ý nghĩa vật lý của đạo hàm.

Gia sư Toán 11 tại Vinh - Đường thẳng và mặt phẳng

VĐ1. ĐƯỜNG THẰNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 1. Các tính chất thừa nhận T/C 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt T/C 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng T/C 3: Nếu một đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng và thì nó nằm trong mặt phẳng đó. T/C 4: Có 4 điểm không cùng một mặt phẳng T/C 5: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một điểm chung khác nữa và do đó chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó. T/C 6: Trên mặt phẳng, các kết quả đã biết trong hình học phẳng đề đúng 2. Cách xác định mặt phẳng

Gia sư toán lớp 11 tại thành phố Vinh -Hai đường thẳng song song

VĐ1: CHỨNG MINH HAI ĐƯỜNG THẲNG SONG SONG I. TÓM TẮT LÝ THUYẾT 1. Vị trí tương đối của hai đường thẳng * Hai đường thẳng gọi là chéo nhau nếu chúng không cùng nằm trên một mặt phẳng * Hai đường thẳng gọi là song song nếu chúng đồng phẳng và không có điểm chung.

Gia sư toán lớp 12 tại TP Vinh - Đạo hàm và ứng dụng

Bài 4. GTLN-GTNN CỦA HÀM SỐ TRÊN MỘT ĐOẠN Nội dung bài học: 1. Bài giảng - Giá trị lớn nhất, giá trị nhỏ nhất của hàm số - Cách tìm giá trị lớn nhất, giá trị nhỏ nhất trên một đoạn - Các ví dụ toán liên quan đến kháo sát GTLN, GTNN của hàm số

Gia sư toán 12 tại Vinh - Khảo sát hàm số và ứng dụng đồ thị hàm số

Bài 1. ĐỊNH NGHĨA ĐẠO HÀM VÀ ĐỊNH LÍ LAGRANGE Nội dung bài học:1. Bài giảng- Định nghĩa đạo hàm tại một điểm- Các dạng định nghĩa của đạo hàm, đạo hàm trên một khoảng- Ý nghĩa hình học của đạo hàm- Định lý Lagrange-Ý nghĩa hình học của định lý Lagrange- Các ví dụ toán liên quan định nghĩa đạo hàm và định lý Lagrange2. Bài tập Vấn đề 1: - Tính đạo hàm bằng định nghĩa Vấn đề 2: - Tìm số c trong định lý Lagrange - Dùng định lý Lagrange để chứng mình bất đẳng thức3. Kiểm tra Cuối bài học có bài kiểm tra trắc nghiệm ôn tập kiến thức lý thuyết và bài tập, gồm 10 câu được chấm điểm và đáp án tham khảo.

Đạo hàm và ứng dụng P3

ĐỊNH CHIỀU BIẾN THIÊN CỦA HÀM SỐ CÓ THAM SỐ ( LOẠI I VÀ II) Nội dung bài học: 1. Bài giảng: - Tóm tắt lại cách xét dấu của tam thức bậc hai. - Phương pháp tìm cực trị của hàm số theo tham số. - Phương pháp định một tham số để hàm số luôn tăng hoặc luôn giảm. - Một vài ví dụ và bài tập áp dụng để minh chứng cho phương pháp định tham số để hàm số có cực trị hoặc để hàm số luôn tăng ( giảm).

PT mũ - logarit

Bài 1. ĐỊNH NGHĨA ĐẠO HÀM VÀ ĐỊNH LÍ LAGRANGE Nội dung bài học: 1. Bài giảng - Định nghĩa đạo hàm tại một điểm - Các dạng định nghĩa của đạo hàm, đạo hàm trên một khoảng - Ý nghĩa hình học của đạo hàm - Định lý Lagrange -Ý nghĩa hình học của định lý Lagrange - Các ví dụ toán liên quan định nghĩa đạo hàm và định lý Lagrange

 1   2   3 

 
GIA SƯ TIỂU HỌC
Gia Sư Lớp 1
Gia Sư Lớp 2
Gia Sư Lớp 3
Gia Sư Lớp 4
Gia Sư Lớp 5
Hành Trang Vào Lớp 1
Gia sư luyện chữ đẹp
 
GIA SƯ THCS
Gia Sư Lớp 6
Gia Sư Lớp 7
Gia Sư Lớp 8
Gia Sư Lớp 9
Luyện Thi Lớp 10
 
GIA SƯ THPT
Gia Sư Lớp 10
Gia Sư Lớp 11
Gia Sư Lớp 12
Luyện Thi Đại Học
 
GIA SƯ THEO MÔN
Gia Sư Môn Toán
Gia Sư Môn Lý
Gia Sư Môn Hóa
Gia Sư Môn Văn
 
GIA SƯ TIẾNG ANH
Tiếng Anh cho trẻ em
Tiếng Anh Tiểu Học
Tiếng Anh THCS
Tiếng Anh THPT
Tiếng Anh Giao Tiếp
Luyện Thi TOEIC – IELTS
 
GIA SƯ NGOẠI NGỮ
Gia Sư Tiếng Hàn
Gia Sư Tiếng Nhật
Gia Sư Tiếng Pháp
Gia Sư Tiếng Trung
 
CẬP NHẬT LỚP FANPAGE
 
 
LIÊN KẾT QUẢNG CÁO
 
VID8EO CLIPS
Video
9 giải pháp giúp bạn lấy lại động lực học tập mỗi ngày
Tia hồng ngoại-Tìm gia sư vật lý lớp 12 tại tp Vinh
Mẫu đề thi Tiếng Anh Thpt năm 2015- tìm gia sư tiếng anh tại vinh
Mẫu đề thi môn văn học 2015 bộ giáo dục và đào tạo- tìm gia sư văn học tại Vinh
Đề thi mẫu môn sinh học 2015 của bộ giáo dục- tìm gia sư sinh học tại thành phố Vinh
Mẫu đề thi nghiệp THPT ĐH năm 2015 môn hóa học - tìm gia sư hóa học tại vinh
Đề thi mẫu môn vật lý tốt nghiệp thpt đh của bộ giáo dục - tìm gia sư vật lý tại vinh
Đề mẫu môn toán thpt năm 2015 bộ giáo dục- tìm gia sư tại vinh
Các loại quang phổ - tìm gia sư tại Vinh
giao thoa sóng- tìm gia sư vật lý tại thành phố Vinh
 
Trung tâm gia sư Thành Vinh
Địa chỉ: Số 6B Ngô Trí Hoà, TP Vinh, Nghệ An
Địện thoại: 0986.127.375 
Email: [email protected]
Website: http://giasuthanhvinh.com